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INTRODUCTION

In the theory of Riemann integration, we have the well-known rule (perhaps theorem) for
computing a double integral on P = [a,b] X [¢, d] via iterated integrals:
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As for the convergence theorems, and for differentiating under the integral, the rule can
fail for suitably misbehaved functions: see the examples below, following the statement of
Theorem 47.

In measure theory, we can think of dA as integration with respect to 2-dimensional
Lebesgue measure %2, and then one can similarly ask whether the #?-integral can be
evaluated as an iterated integral. In fact, what we do is define a completely new measure,
the product measure L' x %1 on R? = R x R. More generally, given a measure i on X and
a measure v on Y, we define the product measure ptxv on X x Y.



Our goal in this Handout is to show that, for suitably well behaved functions, the product
measure satisfies a formula analogous to (¢): this is the Fubini-Tonelli Theorem (Theorem
47). Also, in the Lebesgue setting, we prove that the product of two Lebesgue measures is
just a higher dimensional Lebsegue measure (Theorem 43).

PRODUCT MEASURES

Given a measure p on X and a measure ¥ on Y, we want to define a new measure, [t xv
on X x Y. The key property we want, at least for measurable sets, is

(%) pxv(Ax B) = u(A)-v(B) ACX,BCY.

As for Lebesgue measure, the precise definition of p x v, is complicated, involving the
covering of arbitrary sets by unions of rectangles A; x B;.! Moreover, unlike the Lebesgue
setting, the generality of the sets A and B makes the proving of () quite tricky, even
assuming that A and B are measurable: this necessitates a subtlety in the definition.

Definition: For ;1 a measure on X and v a measure on Y, define uxv : p(X x Y)—R* by

pxv(D) = inf {Z w(A;)v(B;) : A; C X p-measurable, B; CY v-measurable, D C U A; x Bj
j=1

Jj=1

}

As

We shall make a number of remarks, but first we have

()
PROPOSITION 41: If it is a measure on X and v is a measure on Y then puxv

is a measure on X x Y.

'Tt should be clear that by “rectangle”, we simply mean any product set A x B; there is no suggestion
that the sides of such a rectangle are intervals, or are in any other way simple sets.




REMARKS
e Given Proposition 41, we can now refer to p x v as the product measure on X x Y.

e The condition that the covering rectangles have measurable sides is not needed to prove
that p X v is a measure. The point of the condition is to facilitate the proof of (%) for
A and B measurable: see Theorem 42 below.? Of course, if ¢ and v are Borel regular
(or, more generally, regular), then the measurability condition is redundant: given any
covering rectangle A x B we can find A’ x B’ O A x B with A" and B’ measurable,
and p(A") = p(A) and v(B') = v(B).

e It is not obvious that if 4 and v are Borel measures then so is p X . See Theorem 45.

We now show that product measures have the desired product property.

THEOREM 42: Suppose j is a measure on X and v is a measure on Y. If A C X is
p-measurable and B C Y is v-measurable then:

(a) uxv(Ax B)=pu(A)-v(B);

(b) A x B is pt X v-measurable.

o
REMARK: Neither (a) nor (b) is in general true for A and B not measurable.

PROOF: To prove (a), we first note that A x B covers A x B, and therefore it trivially
follows that uxv(A x B) < p(A) - v(B). To prove the reverse inequality, consider a covering
{A; x B;}52, of A x B by rectangles with measurable sides (i.e. all of the A; and B; are
measurable). Then

Xa+Xp = Xaxn SX(, 4;x5,) ZXA B, = Xa,Xp, -
7j=1

The p-measurability of A implies that, for ﬁxed y € Y, the function Xaxp(z,y) = Xa(z) -
Xp(y) is a measurable function of x, and similarly for X4, p,(7,y). We can therefore apply
the Monotone Convergence Theorem (Theorem 19) to compute

w(A) - Xp(y) = /XAxB(ﬂU y) dp(w Z/XA «B;(z,y)d Zu

These are now measurable functions of y. So, we can apply the Monotone Convergence
Theorem again, to conclude

Since this is true for an arbitrary covering of A x B, we conclude j1(A)-v(B) < px V(A X B),
as desired.

2T don’t know what happens if uxv is defined without the measurability condition, whether the subsequent
theorems cease to be true, or just that the proofs become harder. I suspect the former.
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For (b), we consider D C X x Y, and we want to prove that
(A) puxv(D) = puxv(DN(Ax B))+uxv(D~(Ax B)) .

To this end, consider a covering {A; x B;} of D by rectangles with measurable sides. We
then use A x B to cut up each A; x B; into four subrectangles, as pictured.

A;

—

B;
N
D

A

This gives us a new covering {A) x By}, for which

e For each k either A} x B, C Ax B or A; x B, C~ (A x B);

. iu ZM

k=1

(Note that the justification of the second claim uses the measurability of A, B, A; and B;,
but not the measurability of A x B or A; x B;: we are not here claiming anything about the

product measures of these rectangles.)

We then have

D m(Apv(By) =Y mAv(By)
j=1 k=1
= D wABY) + Y uA(B)
Al xB; CAxB Al xB; C~AxB)
> puxv(DN(AXx B))+pxv(D~(A X B)) (by definition).

Taking the inf over all such coverings, we obtain (A).

[oX



Theorem 42 tells us that rectangles with measurable sides are measurable, and have the
desired measure. Some natural results follow from this. To begin,

S& THEOREM 43: £™mt = ¥ x £

[o

Note that Theorem 43 can be proved without appealing to Proposition 5(b), that .£™(P) =
v(P) for an m-box P C R™: consequently, Theorem 42 and Proposition 5(a) give an alterna-
tive proof of Proposition 5(b). In fact, a common approach to higher dimensional Lebesgue
measure is to directly define

L =L x o x L

avoiding our m-box definition altogether. In some sense, this makes life easier: certainly, the
convergence theorem proof of Theorem 42(a) is (eventually) much simpler than any direct
proof of Proposition 5(b). Still, it is natural to define .Z™ as we did at that early stage;
and, even if more painful, a direct proof of Proposition 5(b) is more transparent.

% LEMMA 44: Suppose X and Y are topological spaces, and suppose A C X is

Borel and B C Y is Borel. Then A x B is Borel.

%THEOREM 45: Suppose X and Y are second countable topological spaces, and

suppose (1 is a measure on X and v is a measure on Y. Then

(a) If 4 and v are Borel then so is uxv.
(b) If p and v are Borel regular then so is puxv.

(c) If p and v are Radon (in the case that X and Y are locally compact and Hausdorff)

then so is uxv.



REMARKS:

e The hypothesis of second countability guarantees that every open set in X x Y can
be written as a countable union of open rectangles, making the proof of (a) straight-
forward.?

e Part (b) follows easily from (a) and Lemma 4, and thus holds whenever (a) does.

e Similarly, for X and Y locally compact and Hausdorff, (¢) holds whenever (a) holds.

THE FUBINI-TONELLI THEOREM

We return to the question raised in the introduction, that of integrating a measurable
function f: X x Y —R*. In case f = Xaxp is the characteristic function of a rectangle with
measurable sides, Theorem 42 is exactly the result we want. The next step is to prove the
desired result for f = Xg for general pxv-measurable S, which is the content of Lemma 46;
after that the Fubini-Tonelli Theorem — Theorem 47 for general f — follows routinely.

Note that, whether a characteristic or general function, it is part of our job is to show
that f(x,y) gives rise to measurable functions of the individual variables z and y: this is not
merely a matter of definition, and is the reason for the complicated statements of Lemma
46 and Theorem 47. Also, as illustrated by the first counterexample after Theorem 47,
the Fubini-Tonelli Theorem is only guaranteed to hold for suitably finite functions. That
requirement is encapsulated by the following.

Definition: Suppose i is a measure on a set X. Then:

o Aset AC X is o-finite if A = U A; where each A; is measurable with p(A;) < oo.

j=1

e A measurable function f: X —R* is o-finite if {z : f(z) # 0} is o-finite.

S
(54) | We note that

(a) If f is summable then f is o-finite.
(b) If X is o-finite then all measurable functions on X are o-finite.
(c

) If X and Y are o-finite (with respect to p and v, respectively), then puxv is o-finite.

31 don’t know whether (a) remains true without such a hypothesis, but it seems unlikely. Let F be the
o-algebra generated by the rectangles A x B with Borel sides, and let B be the collection of Borel subsets
of X x Y. Then F C B, by Lemma 44. However, there are topological spaces X and Y for which F ; B;
presumably, in this situation one can construct Borel ¢ and v for which pxv is not Borel.



LEMMA 46: Suppose p is a measure on X and v is a measure on Y, and suppose
SCXxY.ForyeY,let

Sy={reX:(z,y) € S}.
If S is o-finite with respect to pux v then:

(i) Sy is a p-measurable subset of X for v-a.e. y € Y;
(ii) The function y — u(S,) is v-measurable;

(ifi) pxv(S) = [ 1(S,)dv(y).

-X

We prove Lemma 46 at the end of this Handout. We first state, and remark upon:

% THEOREM 47 (Fubini-Tonelli Theorem):  Suppose /1 is measure on X and

v is a measure on Y, and suppose that f: X x Y —R* is uxv-integrable and o-finite with
respect to uxv. Then:

(i) The function z — f(z,y) is p-integrable for v-a.e. y € Y,

(ii) The function y — [ f(z,y)du(x) is v-integrable;

(iii)
[ gancv= [ [ emante) | avio)

X XY Y X




REMARKS:

e The Fubini-Tonelli Theorem follows routinely from Lemma 46, writing f = f* — [,
and approximating f™ and f~ by simple functions.

e Interchanging the roles of X and Y, we have

//f:vydu dv(y :// (x,y)dv(y) | du(z)

X

S
. By, a summable function is automatically o-finite, and thus the Fubini-Tonelli
Theorem applies to any such function.

S
e Again by , if X and Y are o-finite then the Fubini-Tonelli Theorem applies to any
nonnegative measurable function on X x Y.

e The first example below shows the necessity of the hypothesis of o-finiteness.

e The second example below shows that even if the two iterated integrals are well-defined,
they may not be equal. Thus the hypothesis that f be uxv-integrable is also necessary.

S
Examples: Let X =Y = [0, 1].

(a) Let p =% and let v be counting measure. Let f = Xp, where D is the diagonal:

D ={(z,z):z€0,1]}.

/ Xpdgxu#//XDdgdu#//XDdudg

[0,1]x[0,1] [0,1][0,1] [0,1][0,1]

Then

(b) Let p=v =2, and let f(x,y) = Then f is o-finite and

(2+y)

//fxydg ALy %//fxydo% )dZ(x).

[0,1][0,1] [0,1][0,1]



PROOF OF LEMMA /6: By the o-finiteness hypothesis, we can assume pxv(S) < 0.

o0

Part 1. We first prove the Lemma in case S = U A; x Bj is the union of rectangles with
j=1

measurable sides.

Chopping up, as in the proof of Theorem 42, we can assume the rectangles are pairwise
disjoint. (First chop As x B, with respect to A; X Bj, discarding the subrectangle (A; N
Ay) x (B1N By). Next chop As x By with respect to the disjoint rectangles already obtained,
discarding any redundant subrectangles. Continue inductively.)

Ay

By

A

ForyeY,

S, = 4,

yEB;

which is clearly p-measurable. As well, since the rectangles are pairwise disjoint, this is a
disjoint union for each y. Thus.

p(Sy) =Y w4y = ZM(Aj)XBj (v),

yEB;

which is clearly a measurable function of y. Integrating with respect to y, the Monotone
Convergence Theorem, Theorem 42 and countable additivity imply

[0 a0) =3 [ a5, (5) dvty) = 3" A wB;) = 3 (i By) = pxa(s).

Jj=1

This is exactly what we wanted to prove.

Part 2. For any S C X x Y, we show that there is a measurable R O S for which
() () = ixv(R) = [ n(R)dv(y).

In particular, R, is p-measurable for v-a.e. y, and the function y — p(R,) is v-measurable.



(RNS)y = RyNSy

Fix n € N. By Part 1, together with the definition of ux v, we can find R,, a union of
rectangles, with

) jxv(R,) = / P ((Ba)y) dwly) < px(S) + - < oc.

Further, we can assume R,.; C R,. (Given R,, find any R, satisfying (1). Chopping
as above, and discarding subrectangles outside of R,,, we can ensure that every rectangle of
R, 11 lies within some rectangle of R,,).

We let R = ﬂ R,,, and the idea is to let n— o0 in (}). First of all, it is clear that R O 5,
n=1

and that pxv(R) = pxv(S).

Next, (1) implies for fixed n that u ((R,,),) < oo except for a v-null set. Taking the union
over N of these null sets, we see:

(1) For v-a.e. y € Y, we have u ((R,),) < oo for every n € N.
But -
R, = ﬂ (Rn)y -
n=1

By Part 1, each (R,)y is p-measurable, and thus so is R,. Then, by Theorem 8(b) and (1),

u(Ry) = lim p((Rn)y) for v-a.e. y €Y.
n—roo
In particular, the function y — u(R,) is a limit of measurable functions, and is thus measur-
able. As well, each function in this limit is dominated by the function y — u((R;),), which
is summable, by (t). Thus, by the Dominated Convergence Theorem (Theorem 22), we can
take the limit in (1), giving (*).
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Part 3: Suppose that uxv(S) = 0. Then Part 2 implies that there is an R O S with

/M(Ry)dl/(y) =0

— u(R,) =0 forrv-ae yeVY
= u(S,) =0 forv-ae yeVY
Part 4. Finally, we consider a general measurable S. By Part 2, we can find a measurable
R DO S satisfying (*). So, it suffices to show that u(R,) = u(S,) for v-a.e. y € Y. Note that
R, =S, U(R~S), .
Then, since S is measurable and pxv(S) < oo,
puxv(R~S) =0
= p((R~S),) =0 forv-aec yecY  (by Part 3)
= u(R,) = pu(S,) forr-ae yeV.

This is exactly what we wanted to prove.

[oX
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SOLUTIONS

o
We want to give an example to show that the formula pxv(A x B) = u(A) - v(B) is
not true in general for non-measurable sets. To do this, let X = {a} and Y = {a,b}. Let p
be delta measure at a, and let v be the Everything-Is-Better measure (Handout 3):

=0 v({a)=v({p)) =2 v({a.b})=3.

It is easy to check that v is in fact a measure. And, it is easy to check that

u{a})-v({ay) =2 pxv({a} x {a}) = 3.

Also {a} x {a} is not p x v-measurable, since it does not split {a} x {a,b} in an additive
manner:

pxv({ay x {a,b}) = 3 # 6 = pxv({a} x {a}) + uxv({a} x {v}).

[oX

%We have X and Y second countable topological spaces, with i a Borel measure on X
and v a Borel measure on Y.

(a) We want to show px v is Borel. If V' C X and W C Y are open then V' x W is open, and
is measurable by Theorem 42. But such open rectangles form a base for the topology
on X x Y, and we can choose a countable base, since we can choose countable bases
for X and Y. Thus, every open set in X X Y is a countable union of open rectangles,
and is thus measurable.

(b) If 1 and v are Borel regular, we want to show that p x v is Borel regular. By Borel
regularity of ;© and v, in the definition of x v, we can replace any covering by rectangles
with a covering by rectangles with Borel sides. Thus

o x v(D) = inf {Z 1(A;)v(B;) : A;C X Borel, B;CY Borel} DCX xY.
j=1

But given such a covering, % implies ; A; x Bj is Borel. We can now argue exactly
as for the Borel regularity of Lebesgue measure (Proposition 34).
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(c) Given i and v are Radon, we now want to prove that p x v is Radon. We first show
that if K C X x Y is compact then p x ¥(K) < oco. Let II; : X xY — X and
I, : X x Y —Y be the natural projections. Since these projections are continuous,
the sets K7 = II;(K) and K, = II5(K) are closed (since X and Y are Hausdorff) and
compact. Thus, since ¢ and v are Radon, and using Theorem 42,

puxV(K) < puxv(K x Ky) =p(Ky)-v(K,) < oo.

Next, we want to show that any open set V in X X Y can be approximated from
the inside by compact sets. But using the second countability, V' can be written as a
countable union of open rectangles R with R compact; the approximation result then
follows immediately.

Finally, the approximation of A from the outside by open sets follows easily from the

definition of the product measure.
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