
AMSI 2013: MEASURE THEORY

Handout 8

Product Measures

Marty Ross
martinirossi@gmail.com

January 27, 2013

INTRODUCTION

In the theory of Riemann integration, we have the well-known rule (perhaps theorem) for
computing a double integral on P = [a, b]× [c, d] via iterated integrals:

(�)
��

P

f(x, y) dA =

d�

c

b�

a

f(x, y)dxdy =

b�

a

d�

c

f(x, y)dydx .

As for the convergence theorems, and for differentiating under the integral, the rule can
fail for suitably misbehaved functions: see the examples below, following the statement of
Theorem 47.

In measure theory, we can think of dA as integration with respect to 2-dimensional
Lebesgue measure L 2, and then one can similarly ask whether the L 2-integral can be
evaluated as an iterated integral. In fact, what we do is define a completely new measure,
the product measure L 1×L 1 on R2 = R×R. More generally, given a measure µ on X and
a measure ν on Y , we define the product measure µ×ν on X × Y .
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Our goal in this Handout is to show that, for suitably well behaved functions, the product
measure satisfies a formula analogous to (�): this is the Fubini-Tonelli Theorem (Theorem
47). Also, in the Lebesgue setting, we prove that the product of two Lebesgue measures is
just a higher dimensional Lebsegue measure (Theorem 43).

PRODUCT MEASURES

Given a measure µ on X and a measure ν on Y , we want to define a new measure, µ×ν
on X × Y . The key property we want, at least for measurable sets, is

(�) µ×ν(A× B) = µ(A) · ν(B) A ⊆ X,B ⊆ Y.

As for Lebesgue measure, the precise definition of µ×ν, is complicated, involving the
covering of arbitrary sets by unions of rectangles Aj × Bj.1 Moreover, unlike the Lebesgue
setting, the generality of the sets A and B makes the proving of (�) quite tricky, even
assuming that A and B are measurable: this necessitates a subtlety in the definition.

Definition: For µ a measure on X and ν a measure on Y , define µ×ν : ℘(X × Y )→R∗ by

µ×ν(D) = inf

� ∞�

j=1

µ(Aj)ν(Bj) : Aj⊆X µ-measurable, Bj⊆Y ν-measurable, D⊆
∞�

j=1

Aj × Bj

�

We shall make a number of remarks, but first we have

PROPOSITION 41: If µ is a measure on X and ν is a measure on Y then µ×ν
is a measure on X × Y .

1
It should be clear that by “rectangle”, we simply mean any product set A × B; there is no suggestion

that the sides of such a rectangle are intervals, or are in any other way simple sets.
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REMARKS

• Given Proposition 41, we can now refer to µ× ν as the product measure on X × Y .

• The condition that the covering rectangles have measurable sides is not needed to prove
that µ× ν is a measure. The point of the condition is to facilitate the proof of (�) for
A and B measurable: see Theorem 42 below.2 Of course, if µ and ν are Borel regular
(or, more generally, regular), then the measurability condition is redundant: given any
covering rectangle A × B we can find A� × B� ⊇ A × B with A� and B� measurable,
and µ(A�) = µ(A) and ν(B�) = ν(B).

• It is not obvious that if µ and ν are Borel measures then so is µ× ν. See Theorem 45.

We now show that product measures have the desired product property.

THEOREM 42: Suppose µ is a measure on X and ν is a measure on Y . If A ⊆ X is
µ-measurable and B ⊆ Y is ν-measurable then:

(a) µ×ν(A× B) = µ(A) · ν(B);

(b) A× B is µ× ν-measurable.

REMARK: Neither (a) nor (b) is in general true for A and B not measurable.

PROOF: To prove (a), we first note that A × B covers A × B, and therefore it trivially
follows that µ×ν(A×B) � µ(A) · ν(B). To prove the reverse inequality, consider a covering
{Aj × Bj}∞j=1 of A × B by rectangles with measurable sides (i.e. all of the Aj and Bj are
measurable). Then

χA · χB = χA×B � χ
(
�

j Aj×Bj) �
∞�

j=1

χAj×Bj =
∞�

j=1

χAj
χBj .

The µ-measurability of A implies that, for fixed y ∈ Y , the function χA×B(x, y) = χA(x) ·
χB(y) is a measurable function of x, and similarly for χAj×Bj(x, y). We can therefore apply
the Monotone Convergence Theorem (Theorem 19) to compute

µ(A) · χB(y) =

�
χA×B(x, y) dµ(x) �

∞�

j=1

�
χAj×Bj(x, y) d(x) =

∞�

j=1

µ(Aj)χBj(y)

These are now measurable functions of y. So, we can apply the Monotone Convergence
Theorem again, to conclude

µ(A) · ν(B) �
∞�

j=1

µ(Aj)ν(Bj) .

Since this is true for an arbitrary covering of A×B, we conclude µ(A) ·ν(B) � µ×ν(A×B),
as desired.

2
I don’t know what happens if µ×ν is defined without the measurability condition, whether the subsequent

theorems cease to be true, or just that the proofs become harder. I suspect the former.
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For (b), we consider D ⊆ X × Y , and we want to prove that

(�) µ×ν(D) � µ×ν (D ∩ (A× B)) + µ×ν (D∼(A× B)) .

To this end, consider a covering {Aj × Bj} of D by rectangles with measurable sides. We
then use A× B to cut up each Aj × Bj into four subrectangles, as pictured.

This gives us a new covering {A�
k × B�

k}, for which

• For each k either A�
k × B�

k ⊆ A× B or A�
k × B�

k ⊆∼ (A× B);

•
∞�

k=1

µ(A�
k)ν(B

�
k) =

∞�

j=1

µ(Aj)ν(Bj).

(Note that the justification of the second claim uses the measurability of A,B,Aj and Bj,
but not the measurability of A×B or Aj ×Bj: we are not here claiming anything about the
product measures of these rectangles.)

We then have

∞�

j=1

µ(Aj)ν(Bj) =
∞�

k=1

µ(A�
k)ν(B

�
k)

=
�

A�
k×B�

k⊆A×B

µ(A�
k)ν(B

�
k) +

�

A�
k×B�

k⊆∼(A×B)

µ(A�
k)ν(B

�
k)

� µ×ν (D ∩ (A× B)) + µ×ν (D∼(A× B)) (by definition).

Taking the inf over all such coverings, we obtain (�).
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Theorem 42 tells us that rectangles with measurable sides are measurable, and have the
desired measure. Some natural results follow from this. To begin,

THEOREM 43: L m+n = L m × L n.

Note that Theorem 43 can be proved without appealing to Proposition 5(b), that L m(P ) =
v(P ) for an m-box P ⊆ Rn: consequently, Theorem 42 and Proposition 5(a) give an alterna-
tive proof of Proposition 5(b). In fact, a common approach to higher dimensional Lebesgue
measure is to directly define

L m = L 1 × · · ·× L 1 ,

avoiding our m-box definition altogether. In some sense, this makes life easier: certainly, the
convergence theorem proof of Theorem 42(a) is (eventually) much simpler than any direct
proof of Proposition 5(b). Still, it is natural to define L m as we did at that early stage;
and, even if more painful, a direct proof of Proposition 5(b) is more transparent.

52 LEMMA 44: Suppose X and Y are topological spaces, and suppose A ⊆ X is

Borel and B ⊆ Y is Borel. Then A× B is Borel.

53 THEOREM 45: Suppose X and Y are second countable topological spaces, and
suppose µ is a measure on X and ν is a measure on Y . Then

(a) If µ and ν are Borel then so is µ×ν.

(b) If µ and ν are Borel regular then so is µ×ν.

(c) If µ and ν are Radon (in the case that X and Y are locally compact and Hausdorff)
then so is µ×ν.
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REMARKS:

• The hypothesis of second countability guarantees that every open set in X × Y can
be written as a countable union of open rectangles, making the proof of (a) straight-
forward.3

• Part (b) follows easily from (a) and Lemma 4, and thus holds whenever (a) does.

• Similarly, for X and Y locally compact and Hausdorff, (c) holds whenever (a) holds.

THE FUBINI-TONELLI THEOREM

We return to the question raised in the introduction, that of integrating a measurable
function f : X ×Y →R∗. In case f = χA×B is the characteristic function of a rectangle with
measurable sides, Theorem 42 is exactly the result we want. The next step is to prove the
desired result for f = χS for general µ×ν-measurable S, which is the content of Lemma 46;
after that the Fubini-Tonelli Theorem – Theorem 47 for general f – follows routinely.

Note that, whether a characteristic or general function, it is part of our job is to show
that f(x, y) gives rise to measurable functions of the individual variables x and y: this is not
merely a matter of definition, and is the reason for the complicated statements of Lemma
46 and Theorem 47. Also, as illustrated by the first counterexample after Theorem 47,
the Fubini-Tonelli Theorem is only guaranteed to hold for suitably finite functions. That
requirement is encapsulated by the following.

Definition: Suppose µ is a measure on a set X. Then:

• A set A ⊆ X is σ-finite if A =
∞�

j=1

Aj where each Aj is measurable with µ(Aj) < ∞.

• A measurable function f : X→R∗ is σ-finite if {x : f(x) �= 0} is σ-finite.

We note that

(a) If f is summable then f is σ-finite.

(b) If X is σ-finite then all measurable functions on X are σ-finite.

(c) If X and Y are σ-finite (with respect to µ and ν, respectively), then µ×ν is σ-finite.

3
I don’t know whether (a) remains true without such a hypothesis, but it seems unlikely. Let F be the

σ-algebra generated by the rectangles A × B with Borel sides, and let B be the collection of Borel subsets

of X × Y . Then F ⊆ B, by Lemma 44. However, there are topological spaces X and Y for which F � B;
presumably, in this situation one can construct Borel µ and ν for which µ×ν is not Borel.
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LEMMA 46: Suppose µ is a measure on X and ν is a measure on Y , and suppose
S ⊆ X × Y . For y ∈ Y , let

Sy = {x ∈ X : (x, y) ∈ S} .

If S is σ-finite with respect to µ×ν then:

(i) Sy is a µ-measurable subset of X for ν-a.e. y ∈ Y ;

(ii) The function y �→ µ(Sy) is ν-measurable;

(iii) µ×ν(S) =
�
µ(Sy)dν(y).

We prove Lemma 46 at the end of this Handout. We first state, and remark upon:

THEOREM 47 (Fubini-Tonelli Theorem): Suppose µ is measure on X and

ν is a measure on Y , and suppose that f : X × Y →R∗ is µ×ν-integrable and σ-finite with
respect to µ×ν. Then:

(i) The function x �→ f(x, y) is µ-integrable for ν-a.e. y ∈ Y ;

(ii) The function y �→
�
f(x, y)dµ(x) is ν-integrable;

(iii)

�

X×Y

fdµ×ν =

�

Y




�

X

f(x, y)dµ(x)



 dν(y)
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REMARKS:

• The Fubini-Tonelli Theorem follows routinely from Lemma 46, writing f = f+ − f−,
and approximating f+ and f− by simple functions.

• Interchanging the roles of X and Y , we have

�

Y




�

X

f(x, y)dµ(x)



 dν(y) =

�

X




�

Y

f(x, y)dν(y)



 dµ(x)

• By , a summable function is automatically σ-finite, and thus the Fubini-Tonelli
Theorem applies to any such function.

• Again by , if X and Y are σ-finite then the Fubini-Tonelli Theorem applies to any
nonnegative measurable function on X × Y .

• The first example below shows the necessity of the hypothesis of σ-finiteness.

• The second example below shows that even if the two iterated integrals are well-defined,
they may not be equal. Thus the hypothesis that f be µ×ν-integrable is also necessary.

56 Examples: Let X = Y = [0, 1].

(a) Let µ = L and let ν be counting measure. Let f = χD, where D is the diagonal:

D = {(x, x) : x ∈ [0, 1]} .

Then �

[0,1]×[0,1]

χD dL × ν �=
�

[0,1]

�

[0,1]

χD dL dν �=
�

[0,1]

�

[0,1]

χD dνdL .

(b) Let µ = ν = L , and let f(x, y) = x2−y2

(x2+y2)2
. Then f is σ-finite and

�

[0,1]

�

[0,1]

f(x, y) dL (x)dL (y) �=
�

[0,1]

�

[0,1]

f(x, y) dL (y)dL (x) .
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PROOF OF LEMMA 46: By the σ-finiteness hypothesis, we can assume µ×ν(S) < ∞.

Part 1: We first prove the Lemma in case S =
∞�

j=1

Aj ×Bj is the union of rectangles with

measurable sides.

Chopping up, as in the proof of Theorem 42, we can assume the rectangles are pairwise
disjoint. (First chop A2 × B2 with respect to A1 × B1, discarding the subrectangle (A1 ∩
A2)× (B1∩B2). Next chop A2×B2 with respect to the disjoint rectangles already obtained,
discarding any redundant subrectangles. Continue inductively.)

For y ∈ Y ,
Sy =

�

y∈Bj

Aj ,

which is clearly µ-measurable. As well, since the rectangles are pairwise disjoint, this is a
disjoint union for each y. Thus.

µ(Sy) =
�

y∈Bj

µ(Aj) =
∞�

j=1

µ(Aj)χBj(y) ,

which is clearly a measurable function of y. Integrating with respect to y, the Monotone
Convergence Theorem, Theorem 42 and countable additivity imply

�
µ(Sy) dν(y) =

∞�

j=1

�
µ(Aj)χBj(y) dν(y) =

∞�

j=1

µ(Aj)ν(Bj) =
∞�

j=1

µ×ν(Aj×Bj) = µ×ν(S) .

This is exactly what we wanted to prove.

Part 2: For any S ⊆ X × Y , we show that there is a measurable R ⊇ S for which

(∗) µ×ν(S) = µ×ν(R) =

�
µ(Ry) dν(y) .

In particular, Ry is µ-measurable for ν-a.e. y, and the function y �→ µ(Ry) is ν-measurable.
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Fix n ∈ N. By Part 1, together with the definition of µ×ν, we can find Rn, a union of
rectangles, with

(†) µ×ν(Rn) =

�
µ ((Rn)y) dν(y) � µ×ν(S) +

1

n
< ∞ .

Further, we can assume Rn+1 ⊆ Rn. (Given Rn, find any Rn+1 satisfying (†). Chopping
as above, and discarding subrectangles outside of Rn, we can ensure that every rectangle of
Rn+1 lies within some rectangle of Rn).

We let R =
∞�

n=1

Rn, and the idea is to let n→∞ in (†). First of all, it is clear that R ⊇ S,

and that µ×ν(R) = µ×ν(S).

Next, (†) implies for fixed n that µ ((Rn)y) < ∞ except for a ν-null set. Taking the union
over N of these null sets, we see:

(‡) For ν-a.e. y ∈ Y , we have µ ((Rn)y) < ∞ for every n ∈ N.

But

Ry =
∞�

n=1

(Rn)y .

By Part 1, each (Rn)y is µ-measurable, and thus so is Ry. Then, by Theorem 8(b) and (‡),

µ(Ry) = lim
n→∞

µ ((Rn)y) for ν-a.e. y ∈ Y .

In particular, the function y �→ µ(Ry) is a limit of measurable functions, and is thus measur-
able. As well, each function in this limit is dominated by the function y �→ µ((R1)y), which
is summable, by (†). Thus, by the Dominated Convergence Theorem (Theorem 22), we can
take the limit in (†), giving (∗).
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Part 3: Suppose that µ×ν(S) = 0. Then Part 2 implies that there is an R ⊇ S with
�

µ(Ry) dν(y) = 0

=⇒ µ(Ry) = 0 for ν-a.e. y ∈ Y

=⇒ µ(Sy) = 0 for ν-a.e. y ∈ Y

Part 4: Finally, we consider a general measurable S. By Part 2, we can find a measurable
R ⊇ S satisfying (∗). So, it suffices to show that µ(Ry) = µ(Sy) for ν-a.e. y ∈ Y . Note that

Ry = Sy ∪ (R∼S)y .

Then, since S is measurable and µ×ν(S) < ∞,

µ×ν(R∼S) = 0

=⇒ µ ((R∼S)y) = 0 for ν-a.e. y ∈ Y (by Part 3)

=⇒ µ(Ry) = µ(Sy) for ν-a.e. y ∈ Y .

This is exactly what we wanted to prove.
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SOLUTIONS

We want to give an example to show that the formula µ×ν(A × B) = µ(A) · ν(B) is
not true in general for non-measurable sets. To do this, let X = {a} and Y = {a, b}. Let µ
be delta measure at a, and let ν be the Everything-Is-Better measure (Handout 3):

ν(∅) = 0 ν({a}) = ν({b}) = 2 ν({a, b}) = 3 .

It is easy to check that ν is in fact a measure. And, it is easy to check that

µ({a}) · ν({a}) = 2 µ×ν({a}× {a}) = 3 .

Also {a} × {a} is not µ×ν-measurable, since it does not split {a} × {a, b} in an additive
manner:

µ×ν({a}× {a, b}) = 3 �= 6 = µ×ν({a}× {a}) + µ×ν({a}× {b}) .

53 We have X and Y second countable topological spaces, with µ a Borel measure on X
and ν a Borel measure on Y .

(a) We want to show µ×ν is Borel. If V ⊆ X and W ⊆ Y are open then V ×W is open, and
is measurable by Theorem 42. But such open rectangles form a base for the topology
on X × Y , and we can choose a countable base, since we can choose countable bases
for X and Y . Thus, every open set in X × Y is a countable union of open rectangles,
and is thus measurable.

(b) If µ and ν are Borel regular, we want to show that µ × ν is Borel regular. By Borel
regularity of µ and ν, in the definition of µ×ν, we can replace any covering by rectangles
with a covering by rectangles with Borel sides. Thus

µ× ν(D) = inf

� ∞�

j=1

µ(Aj)ν(Bj) : Aj⊆X Borel, Bj⊆Y Borel

�
D⊆X × Y.

But given such a covering, 52 implies
�

j Aj ×Bj is Borel. We can now argue exactly
as for the Borel regularity of Lebesgue measure (Proposition 34).
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(c) Given µ and ν are Radon, we now want to prove that µ × ν is Radon. We first show
that if K ⊆ X × Y is compact then µ × ν(K) < ∞. Let Π1 : X × Y → X and
Π2 : X × Y → Y be the natural projections. Since these projections are continuous,
the sets K1 = Π1(K) and K2 = Π2(K) are closed (since X and Y are Hausdorff) and
compact. Thus, since µ and ν are Radon, and using Theorem 42,

µ× ν(K) � µ× ν(K1 ×K2) = µ(K1) · ν(K2) < ∞.

Next, we want to show that any open set V in X × Y can be approximated from
the inside by compact sets. But using the second countability, V can be written as a
countable union of open rectangles R with R compact; the approximation result then
follows immediately.

Finally, the approximation of A from the outside by open sets follows easily from the
definition of the product measure.
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